ON THE RELATION BETWEEN UPPER CENTRAL QUOTIENTS AND LOWER CENTRAL SERIES OF A GROUP

GRAHAM ELLIS

ABSTRACT. Let H be a group with a normal subgroup N contained in the upper central subgroup Z_cH . In this article we study the influence of the quotient group G=H/N on the lower central subgroup $\gamma_{c+1}H$. In particular, for any finite group G we give bounds on the order and exponent of $\gamma_{c+1}H$. For G equal to a dihedral group, or quaternion group, or extra-special group we list all possible groups that can arise as $\gamma_{c+1}H$. Our proofs involve: (i) the Baer invariants of G, (ii) the Schur multiplier $\mathcal{M}(L,G)$ of G relative to a normal subgroup L, and (iii) the nonabelian tensor product of groups. Some results on the nonabelian tensor product may be of independent interest.

1. Introduction

A group H gives rise to an upper central series $1 = Z_0 H \le Z_1 H \le \cdots$ and a lower central series $H = \gamma_1 H \ge \gamma_2 H \ge \cdots$. In this article we consider a normal subgroup $N \le H$ contained in $Z_c H$, and study the influence of the quotient G = H/N on the lower central group $\gamma_{c+1} H$. An old result of R. Baer [1][18] states that $\gamma_{c+1} H$ is finite whenever the quotient G is finite. We develop Baer's techniques to obtain the following three results.

A. For any finite G we give an upper bound on the order of $\gamma_{c+1}H$. (A previous paper [9] gives a bound on $|\gamma_{c+1}H|$ when G is finite nilpotent; the present result incorporates a small improvement in this case. Several authors have given bounds when c=1. In particular, there are papers by J.A. Green [17], J. Wiegold [29], [30], W. Gaschütz et al. [15], and M.R. Jones [19], [20], [21]. The case c=1 is also studied in [11] where the results are slightly sharper than those obtained by specialising our general bound to c=1.)

B. For any finite G we give an upper bound on the exponent of $\gamma_{c+1}H$. (For c=1 this provides a generalisation of a result of A. Lubotzky and A. Mann [23] on the exponent of the Schur multiplier $\mathcal{M}(G)$ of a powerful p-group G; it also sharpens a bound of M.R. Jones [21] on the exponent of the Schur multiplier of a prime-power group. Furthermore, for $c \geq 1$ our bound yields a generalisation and sharpening of an estimate, given in [7], on the exponent of the c-nilpotent Baer invariant $M^{(c)}(G)$. This improvement for $c \geq 1$ has the following practical implication. An electronically down-loadable appendix to the paper [12] contains a MAGMA computer program for calculating a number of homotopy-theoretic constructions. In particular, it contains a function for computing $M^{(c)}(G)$ which requires, as input data, a finite presentation of a finite group G together with any positive integer g

Received by the editors February 12, 1999. 2000 Mathematics Subject Classification. Primary 20F14, 20F12. divisible by e^c where e denotes the exponent of $M^{(c)}(G)$. The improved estimate for e helps in choosing a suitable value for q.)

C. For G equal to a dihedral group, or quaternion group, or extra-special group we list all possible groups that can arise as $\gamma_{c+1}H$. (This extends the work of N.D. Gupta and M.R.R. Moghaddam [16] which handles the dihedral 2-groups. It also extends the work of D. MacHale and P.Ó'Murchú [26], and J. Burns et al. [8] which treats all groups G of order at most 30 for c=1, and all groups G of order at most 16 for c=2.)

A precise statement of results A-C is provided in Section 2. Their proofs are given in Sections 4-6 respectively. The proofs involve three techniques with which the reader may not be too familiar. The first is the use of a nonabelian tensor product of groups. The second is the use of a Schur multiplier $\mathcal{M}(N,G)$ of a group G relative to a normal subgroup N. The third is the use of Baer invariants of a group. Relevant details of these techniques are recalled, and developed, in Section 3. Some results in Section 3 (in particular Propositions 5, 8 and 9) may be of independent interest.

2. Statement of results

Let a group G be presented as the quotient of a free group F by a normal subgroup R. We state our results in terms of the Baer invariants

$$M^{(c)}(G) = \frac{R \cap \gamma_{c+1} F}{\gamma_{c+1}(R, F)}, \qquad c \ge 1,$$

and related invariants

$$\gamma_{c+1}^*(G) = \frac{\gamma_{c+1}F}{\gamma_{c+1}(R,F)}$$

of the group G, where $\gamma_1(R,F) = R$, $\gamma_{c+1}(R,F) = [\gamma_c(R,F),F]$ and $\gamma_{c+1}F = \gamma_{c+1}(F,F)$. It was shown by R. Baer [1] (see also [14] [25]) that these invariants are, up to group isomorphism, independent of the choice of free presentation of G. Note that there are canonical actions of G on $M^{(c)}(G)$ and $\gamma_{c+1}^*(G)$ given by conjugation in $F/\gamma_{c+1}(R,F)$.

If G is of the form $G \cong H/N$ with N a normal subgroup of H contained in Z_cH , then it is routine [6] to establish the existence of the canonical short exact sequence

$$A \longrightarrow \gamma_{c+1}^*(G) \longrightarrow \gamma_{c+1}H$$

where A is a submodule of the **Z**G-module $M^{(c)}(G)$. We thus have inequalities (in which \leq can be taken to mean 'divides')

(1)
$$|\gamma_{c+1}H| \le |\gamma_{c+1}^*(G)| = |M^{(c)}(G)||\gamma_{c+1}G|$$
,

(2)
$$\exp(\gamma_{c+1}H) \le \exp(\gamma_{c+1}^*(G)) ,$$

involving the orders and exponents of groups. Since $M^{(c)}(G)$ is a subgroup of $\gamma_{c+1}^*(G)$, we also have an inequality

(3)
$$\exp(M^{(c)}(G)) \le \exp(\gamma_{c+1}^*(G))$$
.

Furthermore, a group K arises as $\gamma_{c+1}H$ for some H if and only if

(4)
$$K \cong \frac{\gamma_{c+1}^*(G)}{A}$$

with A a submodule of $M^{(c)}(G)$.

Observations (1), (2) and (4) allow us to state results A-C in terms of the invariant $\gamma_{c+1}^*(G)$. For the statement of result A we let $\chi_c(d)$ denote the number of elements in a basis of the free abelian group $\gamma_c F/\gamma_{c+1} F$ with F the free group on d generators. (There is a well-known formula for $\chi_c(d)$ due to E. Witt [27]. Let $\mu(m)$ be the Möbius function, defined for all positive integers by $\mu(1) = 1$, $\mu(p) = -1$ if p is a prime, $\mu(p^k) = 0$ for k > 1, and $\mu(ab) = \mu(a)\mu(b)$ if a and b are coprime integers. Witt's formula is

$$\chi_c(d) = (1/c) \sum_{m|c} \mu(m) d^{(c/m)}$$

where m runs through all divisors of c. Thus, for instance, $\chi_2(d) = (d^2 - d)/2$, $\chi_3(d) = (d^3 - d)/3$, $\chi_4(d) = (d^4 - d^2)/4$.)

For an arbitrary finite abelian p-group A we define the integer

$$\Lambda_c(A) = e_1 \chi_{c+1}(d_1) + \sum_{j=2}^k e_j \{ \chi_{c+1}(d_1 + \dots + d_j) - \chi_{c+1}(d_1 + \dots + d_{j-1}) \}$$

where the parameters d_i, e_i, k are determined by expressing A uniquely in the form

$$A \cong (C_{p^{e_1}})^{d_1} \times (C_{p^{e_2}})^{d_2} \times \cdots \times (C_{p^{e_k}})^{d_k}$$

with $e_1 > e_2 > \dots > e_k \ge 1$.

For an arbitrary finite d-generator p-group P we define the integer

$$\Psi_c(P) = m_{c+1}d + m_c d^2 + \dots + m_2 d^c$$

where the terms of the lower central series of P have orders $|\gamma_i(P)| = p^{m_j}$.

Note that an arbitrary finite group G has a smallest term L in its lower central series, namely the unique group $L = \gamma_r G$ that satisfies $\gamma_r G = \gamma_{r+1} G$. Suppose that P is a d-generator p-Sylow subgroup of G with Frattini subgroup $\Phi(P) = [P, P]P^p$, that $P/(P \cap [G, G])$ is a δ -generator group, that $(L \cap P)/(L \cap \Phi(P))$ has order p^t , that $L \cap P$ has order p^β , and that $[L \cap P, P]$ has order $p^{\beta'}$. We use these various parameters to define the integer

$$\Theta_c(G, L, P) = \beta + (\omega - \beta')(1 + \delta + \delta^2 + \dots + \delta^{c-1}),$$

where

$$\omega = d\beta - (1/2)t(t+1) .$$

Theorem A. Let G be a finite group whose order has prime factors p_1, p_2, \dots, p_n . Let L be the smallest term in the lower central series of G. The quotient G/L is nilpotent and thus a direct product

$$G/L \cong S_1 \times S_2 \times \cdots \times S_n$$

with S_i a (possibly trivial) p_i -group. For each i let P_i be some p_i -Sylow subgroup of G. Then

$$|\gamma_{c+1}^*(G)| \le \prod_{i=1}^n p_i^{\Lambda_c(S_i^{ab}) + \Psi_c(S_i) + \Theta_c(G, L, P_i)}.$$

The bound is attained, for instance, when G is abelian.

Note that if G is perfect, then $\Lambda_c(S_i^{ab}) = 0$, $\Psi_c(S_i) = 0$ and $\Theta_c(G, L, P_i) = d_i(2\beta_i - d_i - 1)/2 + \alpha_i$ where $p_i^{\beta_i}$ is the order of a d_i -generator p_i -Sylow subgroup P_i , and $p_i^{\alpha_i}$ is the order of the abelianisation P_i^{ab} . If, at the other extreme, G is nilpotent, then we have $\Theta_c(G, L, P_i) = 0$. If G is abelian, then $\Theta_c(G, L, P_i) = 0$ and $\Psi_c(S_i) = 0$.

The bound in Theorem A can be sharpened by involving the relative Schur multiplier $\mathcal{M}(L,G)$ whose definition is recalled in Section 3. More precisely, in the definition of $\Theta_c(G,L,P)$ we can redefine $\omega = \mu + \beta'$ where the pth primary component of the abelian group $\mathcal{M}(L,G)$ has order $|\mathcal{M}(L,G)_p| = p^{\mu}$. For example, if |L| is coprime to $|G|/\exp(L)$, then the relative multiplier is trivial (see Proposition 7(ii)) and we can take $\Theta_c(G,L,P_i) = \beta_i$ for $c \geq 1$.

Before stating result B let us recall that A. Lubotzky and A. Mann [23] defined a p-group P to be powerful if: $p \geq 3$ and $[P,P] \subset P^p$; or p=2 and $[P,P] \subset P^4$ (where P^i is the subgroup of P generated by all ith powers). In other words, P is powerful if $p \geq 3$ and P/P^p is abelian, or if p=2 and P/P^4 is abelian. They proved a number of results about powerful groups P, one of which states that the exponent $\exp(M^{(1)}(P))$ of the Schur multiplier divides the exponent of P. We shall generalise this. Our generalisation implies, for instance, that $\exp(M^{(c)}(P))$ divides $\exp(P)$ for all $c \geq 1$ and all P in a certain class C_p of p-groups; the class C_p consists of those p-groups P satisfying $[[P^{p^{i-1}},P],P] \subset P^{p^i}$ for $1 \leq i \leq e$ where $\exp(P) = p^e$. It is shown in [23] that if P is powerful, then $[P^{p^{i-1}},P] \subset P^{p^i}$. Hence the class C_p contains all powerful p-groups.

Given a normal subgroup $N \subseteq G$ of some group G, we say that the pair (N, G) has nilpotency class k if $\gamma_{k+1}(N, G) = 1$ and $\gamma_k(N, G) \neq 1$. For a real number r we let [r] denote the smallest integer n such that $n \geq r$.

Let N be a normal subgroup of a finite p-group P and suppose that N has exponent p^e . We define the integer

$$\Omega(N, P) = [k_1/2] + [k_2/2] + \cdots + [k_e/2]$$

where k_j denotes the nilpotency class of the pair $(N^{p^{j-1}}/N^{p^j}, P/N^{p^j})$ for $1 \le j \le e$. For N equal to the trivial group we set $\Omega(1, P) = 0$. Note that $\Omega(N, P) \le [k/2]e$ where k is the nilpotency class of P.

Theorem B. (i) Let G be a finite group whose order has prime factors p_1, p_2, \dots, p_n . Let L be the smallest term in the lower central series of G. The quotient G/L is thus a direct product

$$G/L \cong S_1 \times S_2 \times \cdots \times S_n$$

with S_i a (possibly trivial) p_i -group. For each i let P_i be a p_i -Sylow subgroup of G. Suppose that $L \cap P_i/[L \cap P_i, P_i]$ has exponent $p_i^{n_i}$. Suppose that the p_i -primary component of G^{ab} has exponent p^{e_i} with $e_i \geq 0$, and set $m_i = \min(\Omega(L \cap P_i, P_i), e_i)$. Then, for each c > 1,

$$\exp(\gamma_{c+1}^*(G)) \ divides \ \prod_{i=1}^n p_i^{\Omega(L\cap P_i,P_i)+\Omega(S_i,S_i)+n_i+(c-1)m_i} \ .$$

The bound is attained if G is abelian.

(ii) Suppose that a p-group P satisfies $[[P^{p^{i-1}}, P], P] \subset P^{p^i}$ for all $1 \leq i \leq e$ where p^e is the exponent of P. Then $\Omega(P, P) = e$.

Note that, by inequality (3), $\exp(M^{(c)}(G))$ divides $\exp(\gamma_{c+1}^*(G))$ for any group G. Thus, for an arbitrary finite p-group P of class k and exponent p^e , Theorem B(i) implies that $\exp(M^{(c)}(P))$ divides $p^{[k/2]e}$; this sharpens the bound $\exp(M^{(c)}(P)) \leq p^{(k-1)e}$ of Corollary 2.6 in [21] (for c=1) and Theorem 6 in [7] (for $c\geq 1$). Theorem B(ii) implies that $\exp(\gamma_{c+1}^*(P))$ divides $\exp(P)$ if, for example, P is a p-group with P/P^p of nilpotency class 2 and P^p contained in the second centre $Z_2(P)$.

The bound in Theorem B(i) can be sharpened by redefining m_i to be $m_i = \min(\epsilon_i, e_i)$ where $p_i^{\epsilon_i}$ and p^{e_i} are the exponents of the p_i -primary components of $\mathcal{M}(L, G)$ and G^{ab} respectively (cf. Proposition 7 in Section 3). The bound is clearly independent of c if G is finite nilpotent, or if G is perfect. We do not know whether the bound can be made independent of c for arbitrary finite groups.

For the statement of result C we let $D_n = \langle a, b \mid a^2 = b^n = (ab)^2 = 1 \rangle$ denote the dihedral group of order 2m, and $Q_n = \langle a, b \mid a^2 = b^n = (ab)^2 \rangle$ denote the quaternion group of order 4n. Recall [3] that a p-group E is said to be extra-special if its commutator subgroup [E, E], its Frattini subgroup $\Phi(E)$, and its centre $Z_1(E)$ coincide and have order p. The extra-special groups have order p^{2k+1} for $k \geq 1$, with precisely two extra-special p-groups for each k (see [3]). We let E(p,k) denote an arbitrary extra-special p-group of order p^{2k+1} ; we let $E(p,k)^+$ and $E(p,k)^-$ denote the extra-special p-groups of order p^{2k+1} and exponents p and p^2 respectively. For $c \geq 1$ we have the following.

Theorem C. (i) For each $n \geq 2$ we have

$$\gamma_{c+1}^*(D_n) \cong \left\{ egin{array}{ll} C_n & odd \ n, \\ C_n \times (C_2)^{\chi_{c+1}(2)-1} & even \ n. \end{array} \right.$$

The generator $b \in D_n$ acts trivially on $\gamma_{c+1}^*(D_n)$; the generator $a \in D_n$ acts trivially on elements of order two, and inverts the elements of the cyclic summand C_n .

(ii) For each $n \geq 2$ we have

$$\gamma_{c+1}^*(Q_n) \cong \gamma_{c+1}^*(D_n).$$

The generators $a, b \in Q_n$ act as in (i).

(iii) For each $k \geq 2$ we have

$$\gamma_{c+1}^*(E(p,k)) \cong (C_p)^{\chi_{c+1}(2k)}.$$

The group E(p,k) acts trivially on $\gamma_{c+1}^*(E(p,k))$.

(iii)' For $p \geq 3$ and some $1 \leq r \leq 2^c$ we have

$$\gamma_{c+1}^*(E(p,1)^+) \cong (C_p)^{\chi_{c+1}(2)+r},$$

$$\gamma_{c+1}^*(E(p,1)^-) \cong (C_p)^{\chi_{c+1}(2)}.$$

Note that the corresponding Baer invariants $M^{(c)}(G)$ are easily obtained applying the formula $M^{(c)}(G) = \ker(\gamma_{c+1}^*(G) \to \gamma_{c+1}(G))$ to the precise details of the isomorphisms given in the proof of Theorem C. This extends the computations on dihedral 2-groups given in [16]. (We remark that there is a slip in the statement of the main theorem in [16]; the statement is correct for $\gamma_{c+1}^*(D_{2^n})$ but incorrect for $M^{(c)}(D_{2^n})$.)

The precise value of r in Theorem C(iii)' needs further investigation. The computer program listed in [12] yields the following results for the Burnside group $B(2,3) = E(3,1)^+$ of exponent 3 on two generators.

c	$\gamma_{c+1}^*(B(2,3))$	r
1	(C)3	2
1	$(C_3)^3$	2
2	$(C_3)^5$	3
3	$(C_3)^9$	6
4	$(C_3)^{15}$	9
5	$(C_3)^{27}$	18

3. Preliminaries

The tensor product of nonabelian groups is a convenient setting for performing commutator calculations. Its functorial properties make it especially suited to the task of relating commutator calculations in a group to those in a homomorphic image of the group. We begin this section by recalling and developing relevant details on this tensor product. We then recall details on a Schur multiplier $\mathcal{M}(N,G)$ defined for pairs of groups. By a pair of groups (N,G) we simply mean a group G with normal subgroup N. The advantage of working with pairs is that any finite group G can be expressed as an extension

$$(L,G) \longrightarrow (G,G) \longrightarrow (G/L,G/L)$$

of a 'perfect' pair (L, G) by a 'nilpotent' pair (G/L, G/L). Various simplifications apply when dealing with the Schur multiplier of perfect or nilpotent pairs. We end the section with some details on Baer invariants.

Suppose given two groups G and H which act on each other via group actions $G \times H \to H, (g,h) \mapsto {}^g h$ and $H \times G \to G, (h,g) \mapsto {}^h g$. Furthermore, suppose that each group acts on itself by conjugation, ${}^x y = xyx^{-1}$. (In keeping with this notation, our convention for commutators is $[x,y] = xyx^{-1}y^{-1}$.) The tensor product $G \otimes H$ is defined [5], [4] to be the group generated by symbols $g \otimes h$ subject to the relations

$$gg' \otimes h = ({}^{g}g' \otimes {}^{g}h) (g \otimes h),$$

 $g \otimes hh' = (g \otimes h) ({}^{h}g \otimes {}^{h}h'),$

for $g, g' \in G, h, h' \in H$. The actions are said to be *compatible* if

$$({}^{g}h)g' = {}^{g}({}^{h}({}^{g^{-1}}g')), \ ({}^{h}g)h' = {}^{h}({}^{g}({}^{h^{-1}}h'))$$

for all $g, g' \in G, h, h' \in H$.

Proposition 1 ([5]). Suppose that G and H act compatibly on each other.

(i) For all $g, g' \in G, h, h' \in H$ the following identities hold in $G \otimes H$:

$$g' \otimes ({}^{g}h) h^{-1} = {}^{g'}(g \otimes h) (g \otimes h)^{-1} ,$$

$$g ({}^{h}g^{-1}) \otimes h' = (g \otimes h)^{h'}(g \otimes h)^{-1} ,$$

$$g ({}^{h}g^{-1}) \otimes ({}^{g'}h') h'^{-1} = [g \otimes h, g' \otimes h'] .$$

- (ii) There is a homomorphism $\partial_G \colon G \otimes H \to G, g \otimes h \mapsto g^h g^{-1}$.
- (iii) There is a 'diagonal' action of G on $G \otimes H$ given by $g'(g \otimes h) = (g'g \otimes g'h)$.
- (iv) There is an isomorphism $G \otimes H \stackrel{\cong}{\to} H \otimes G$, $g \otimes h \mapsto h \otimes g$.

(v) If ${}^gh = h$, ${}^hg = g$ for all $g \in G, h \in H$, then $G \otimes H \cong G^{ab} \otimes H^{ab}$, where the right-hand side of the isomorphism denotes the usual tensor product of abelian groups.

For each pair of groups (N,G) we can form the tensor product $N\otimes G$ in which all actions are taken to be conjugation in G. Since conjugation yields compatible actions, there is a diagonal action of G on $N\otimes G$. The tensor product $N\otimes G$ acts on G by conjugation in G via the homomorphism $\partial_N\colon N\otimes G\to N$. We can thus construct the triple tensor product $(N\otimes G)\otimes G$. One readily checks that the construction preserves 'compatibility of actions', and that it can therefore be iterated to form the (c+1)-fold tensor product

$$\bigotimes^{c+1}(N,G) = (\cdots((N \otimes G) \otimes G) \otimes \cdots \otimes G), \qquad c \ge 1,$$

involving c copies of G and one copy of N.

Proposition 2 ([13]). Let G be a d-generator p-group with normal subgroup N. Suppose that $|\gamma_i(N,G)| = p^{m_i}$ for $i \geq 1$, $m_i \geq 0$. Then, for any $c \geq 1$, we have

$$|\bigotimes^{c+1}(N,G)| \le p^{m_c d + m_{c-1} d^2 + \dots + m_1 d^c}$$
.

Lemma 3. Let $G_3 \hookrightarrow G_2 \twoheadrightarrow G_1$, $H_3 \hookrightarrow H_2 \twoheadrightarrow H_1$ be two short exact sequences of groups. Suppose that G_i and H_i act compatibly on one another for $1 \le i \le 3$, and that the homomorphisms preserve actions. Then there is an exact sequence of homomorphisms

$$(G_3 \otimes H_2) \overline{\times} (G_2 \otimes H_3) \longrightarrow G_2 \otimes H_2 \longrightarrow G_1 \otimes H_1 \longrightarrow 1$$

in which $\overline{\times}$ denotes a semi-direct product whose details need not be specified.

Proof. The lemma is a routine adaption of Proposition 9 in [4]. \Box

Lemma 4. Let N be a normal subgroup of G for which the commutator [n, [n, g]] is trivial for all $g \in G, n \in N$. In the tensor product $N \otimes G$, with G and H acting by conjugation, the following identity holds for all $g \in G, n \in N$ and all integers t > 2:

$$n^t \otimes g = (n \otimes g)^t (n \otimes [n, g]^{t(t-1)/2}).$$

Proof. The case N=G is proved in [2]. The proof of the more general case is analogous; it can also be derived directly using Proposition 1(i).

Recall that a pair (N,G) is said to be *nilpotent* of class k if $\gamma_{k+1}(N,G)=1$ and $\gamma_k(N,G)\neq 1$. Also recall that [k/2] denotes the smallest integer n such that $n\geq k/2$.

Proposition 5. Let G be a group with normal subgroup N. Suppose that N has prime-power exponent p^e and that the pair (N,G) has nilpotency class $\leq k$. Then, for any $c \geq 1$, we have

$$\exp(\bigotimes^{c+1}(N,G))$$
 divides $p^{[k/2]e}$.

Proof. For $t = p^e$ the binomial coefficient $\binom{t}{2}$ is divisible by t when $p \geq 3$, and divisible by t/2 when p = 2. Thus Lemma 4 proves the proposition for k = 2, c = 1 (since for $p = 2, t = p^e$ and $\gamma_3(N, G) = 1$ the identity

$$n \otimes [n,g]^{t/2} = n \otimes [n^{t/2},g]$$

holds for all $g \in G, n \in N$; but $[n^{t/2}, g] = 1$ because $n^{t/2}$ has order at most 2.) Let us now consider k = 2 and some $c \ge 2$. Then

$$\bigotimes^{c+1}(N,G) = \bigotimes^{c}(N \otimes G,G)$$

and $N \otimes G$ acts trivially on G. The triviality of this action implies the identity

$$(\cdots((n\otimes g)^t\otimes g_1)\otimes\cdots\otimes g_c)=(\cdots((n\otimes g)\otimes g_1)\otimes\cdots\otimes g_c)^t$$

in $\bigotimes^{c+1}(N,G)$. Hence $\exp(\bigotimes^{c+1}(N,G))$ divides $\exp(N\otimes G)$ and the proposition is proved for $k=2,c\geq 1$.

Suppose now that the proposition has been proved for some c and all $k < k_0$. Suppose $\gamma_{k_0+1}(N,G) = 1$. Lemma 3 implies an exact sequence

$$(\gamma_{k_0-1}(N,G)\otimes G)\overline{\times}(N\otimes\gamma_{k_0-1}(N,G))\to N\otimes G\to \frac{N}{\gamma_{k_0-1}(N,G)}\otimes \frac{G}{\gamma_{k_0-1}(N,G)}.$$

Working in $N \otimes G$, the image of $\gamma_{k_0-1}(N,G) \otimes G$ contains the image of $N \otimes \gamma_{k_0-1}(N,G)$ by virtue of the identity

$$m \otimes [n,g] = ([n,g] \otimes m)^{-1}$$

which follows from Proposition 1(i) for all $g \in G, m, n \in \mathbb{N}$. We thus have an exact sequence

$$\gamma_{k_0-1}(N,G)\otimes G\to N\otimes G\to rac{N}{\gamma_{k_0-1}(N,G)}\otimes rac{G}{\gamma_{k_0-1}(N,G)}$$
 .

By applying Lemma 3 to this sequence, and invoking a similar identity, we obtain the exact sequence

$$(\gamma_{k_0-1}(N,G) \otimes G) \otimes G \to (N \otimes G) \otimes G$$

$$\to (\frac{N}{\gamma_{k_0-1}(N,G)} \otimes \frac{G}{\gamma_{k_0-1}(N,G)}) \otimes \frac{G}{\gamma_{k_0-1}(N,G)}.$$

Repetition of the process yields an exact sequence

$$\bigotimes^{c+1}(\gamma_{k_0-1}(N,G),G) \to \bigotimes^{c+1}(N,G) \to \bigotimes^{c+1}(\frac{N}{\gamma_{k_0-1}(N,G)},\frac{G}{\gamma_{k_0-1}(N,G)})$$

from which we deduce that $\exp(\bigotimes^{c+1}(N,G)) \leq p^{[(k_0-2)/2]}p^e = p^{[k_0/2]}$. By induction, the proposition is proved for all $c, k \geq 1$.

Following J.-L.Loday [22] we say that a pair of groups (N, G) is *perfect* if N = [N, G].

Proposition 6. Let (N,G) be any perfect pair of groups and set

$$M = \ker(\partial_N : N \otimes G \to N).$$

Then M is abelian and, for each $c \geq 1$, there is an exact sequence

$$\bigotimes^{c+1}(M,G^{ab}) \to \bigotimes^{c+2}(N,G) \to \bigotimes^{c+1}(N,G) \to 1$$

where $\bigotimes^{c+1}(M, G^{ab})$ is the usual iterated tensor product of abelian groups.

Proof. Let $H_3 \hookrightarrow H_2 \twoheadrightarrow H_1$ be a short exact sequence of groups, and let G be a group such that G and H_i act compatibly on each other for $1 \leq i \leq 3$ with the homomorphisms preserving the actions. Then H_3 acts trivially on G via H_2 . Suppose that the action of G on H_2 restricts to a trivial action of G on H_3 . Then Proposition 1(v) and Lemma 3 imply an exact sequence

$$(5) H_3^{ab} \otimes G^{ab} \to H_2 \otimes G \to H_1 \otimes G \to 1.$$

A perfect pair of groups (N,G) gives rise to a short exact sequence $\ker(\partial_N) \hookrightarrow N \otimes G \xrightarrow{\partial} N$. The identity

$$^{h}(n \otimes g) = ([n, g] \otimes h)^{-1} (n \otimes g)$$

which holds in $N \otimes G$ (see Proposition 1) for all $g, h \in G, n \in N$ implies that G acts trivially on $\ker(\partial_N)$. So (5) implies an exact sequence

$$M \otimes G^{ab} \rightarrow (N \otimes G) \otimes G \xrightarrow{\partial \otimes 1} N \otimes G \rightarrow 1$$
.

Note that the diagonal action of G on $M \otimes G^{ab}$ is trivial, and hence G acts trivially on $\ker(\partial \otimes 1)$. Thus a second application of (5) yields the exact sequence $\ker(\partial \otimes 1) \otimes G^{ab} \to \bigotimes^4(N,G) \to \bigotimes^3(N,G) \to 1$. From this we derive the exact sequence $\bigotimes^3(M,G^{ab}) \to \bigotimes^4(N,G) \to \bigotimes^3(N,G) \to 1$. The proposition follows from a repetition of this argument.

Given a pair of groups (N,G) we denote by $\Delta(N,G)$ the subgroup of $N\otimes G$ generated by the elements $n\otimes n$ for $n\in N$. This is a normal subgroup and following [5] we define the *exterior product*

$$N \wedge G = N \otimes G/\Delta(N,G)$$
.

The homomorphism $\partial_N \colon N \otimes G \to N$ clearly induces a homomorphism $\partial_N \colon N \wedge G \to N$. The identity

$$[g, n] \otimes [g', n'] = [(g \otimes n), (g' \otimes n')],$$

of Proposition 1(i) implies an isomorphism $N \wedge G \cong N \otimes G$ in the case of perfect pairs.

Definition ([10]). The *Schur multiplier* of a pair of groups (N,G) is the group $\mathcal{M}(N,G)$ defined by

$$\mathcal{M}(N,G) = \ker(\partial_N : N \wedge G \to N)$$
.

If the pair is perfect, then, equivalently,

$$\mathcal{M}(N,G) = \ker(\partial_N : N \otimes G \to N)$$
.

Proposition 7 ([10]). Let G be a finite group with normal subgroup $N \subseteq G$.

- (i) Then $\mathcal{M}(N,G)$ is a finite abelian group with exponent e dividing the order of G.
- (ii) Let e' denote the exponent of N. Then, in fact, ee' divides the order of G and e divides the order of N.
- (iii) Let K be any subgroup of G such that each $g \in G$ can be expressed (not necessarily uniquely) as a product g = nk with $n \in N, k \in K$. Then e^2 divides $|N| \times |K|$.

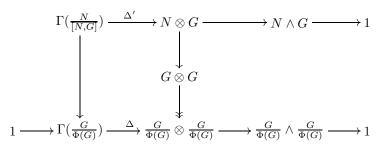
(iv) Suppose that P is a p-Sylow subgroup of G. Let $\mathcal{M}(P \cap N, P)_p$ denote the p-component of the multiplier, and $\iota \colon \mathcal{M}(P \cap N, P) \to \mathcal{M}(N, G)$ the homomorphism induced by inclusion. Then

$$\mathcal{M}(P \cap N, P) \cong \mathcal{M}(N, G)_p \oplus \ker(\iota)$$
.

Proposition 8. Let G be a δ -generator p-group with normal subgroup $N \subseteq G$ of order $|N| = p^{\beta}$. Suppose that $|N/(N \cap \Phi(G))| = p^t$ where $\Phi(G) = [G, G]G^p$. Then

$$|N \wedge G| \le p^{\delta \beta - \frac{t(t+1)}{2}}$$
.

Proof. Proposition 2 implies that $|N \otimes G| \leq p^{\delta \beta}$. There is a commutative diagram of group homomorphisms



in which the rows (but not the columns) are exact [5]. The abelian group $\Gamma(A)$, defined for any additive abelian group A, is J.H.C. Whitehead's universal quadratic construction; it is generated (as an abelian group) by symbols $\gamma(a)$ for $a \in A$ subject to the relations

$$\gamma(-a) = \gamma(a),$$

$$\gamma(a+b+c) + \gamma(a) + \gamma(b) + \gamma(c) = \gamma(a+b) + \gamma(a+c) + \gamma(b+c)$$

for $a, b, c \in A$. The homomorphism Δ is defined on generators by $\Delta(\gamma(x)) = x \otimes x$ for $x \in G/\Phi(G)$. The image of $\Gamma(G/[N,G])$ in $G/\Phi(G) \otimes G/\Phi(G)$ is an elementary abelian group of rank t(t+1)/2. Hence the exactness of the top row implies

$$|N \wedge G| = \frac{|N \otimes G|}{|\Delta'(\Gamma(N/[N,G]))|} \le \frac{p^{\delta\beta}}{p^{t(t+1)/2}}.$$

This proves the proposition.

Proposition 9. Let N be a normal subgroup of a group G. If N has exponent p^e , then

$$\exp(N \wedge G) \ divides \ p^{[k_1/2]+[k_2/2]+\dots+[k_e/2]}$$

where k_i denotes the nilpotency class of the pair $(N^{p^{i-1}}/N^{p^i}, G/N^{p^i})$ for $1 \le i \le e$.

Proof. Let K, M be normal subgroups of G with $K \leq M$. Using the identity $m \otimes k = (k \otimes m)^{-1}$ which holds in $M \wedge G$ for all $k \in K, m \in M$, one readily develops the short exact sequence

(6)
$$K \wedge G \to M \wedge G \to M/K \wedge G/K \to 1$$

from Lemma 3. Now (6) yields the exact sequences

$$N^{p^i} \wedge G \rightarrow N^{p^{i-1}} \wedge G \rightarrow N^{p^{i-1}}/N^{p^i} \wedge G/N^{p^i} \rightarrow 1$$

for $i \geq 1$. Hence

$$\exp(N \wedge G) \le \prod_{i=1}^e \exp(N^{p^{i-1}}/N^{p^i} \wedge G/N^{p^i}).$$

Proposition 5 implies $\exp(N^{p^{i-1}}/N^{p^i} \wedge G/N^{p^i}) \leq p^{[k_i/2]}$.

Tensor products are related to Baer invariants by the following slight generalisation of a result of A.-S.T. Lue [24] (cf. [6]).

Proposition 10 ([24]). For any group G with normal subgroup $N \subseteq G$, and for $c \ge 1$, there is an exact sequence

$$\bigotimes^{c+1}(N,G) \to \gamma_{c+1}^*(G) \to \gamma_{c+1}^*(G/N) \to 1.$$

It is convenient to set

$$\overline{\gamma}_{c+1}^*(N,G) = \ker(\gamma_{c+1}^*(G) \to \gamma_{c+1}^*(G/N))$$
.

Note that $\gamma_{c+1}^*(G) = \overline{\gamma}_{c+1}^*(G,G)$. (The bar is intended to suggest that $\overline{\gamma}_{c+1}^*(N,G)$ is a quotient of some functor $\gamma_{c+1}^*(N,G)$. For example, we can take $\gamma_2^*(N,G) = N \wedge G$ [6]. Proposition 9 and Proposition 11 could be subsumed under a single result concerning $\gamma_{c+1}^*(N,G)$.)

Proposition 11. Suppose that N is a normal subgroup of a group G. If N has exponent p^e , then

$$\exp(\overline{\gamma}_{c+1}^*(N,G))$$
 divides $p^{[k_1/2]+[k_2/2]+\cdots+[k_e/2]}$

where k_i denotes the nilpotency class of the pair $(N^{p^{i-1}}/N^{p^i}, G/N^{p^i})$ for $1 \le i \le e$.

Proof. The proof is analogous to that of Proposition 9, but with (6) replaced by the exact sequence

$$\overline{\gamma}_{c+1}^*(K,G) \to \overline{\gamma}_{c+1}^*(M,G) \to \overline{\gamma}_{c+1}^*(M/K,G/K) \to 1 \, .$$

We leave the verification of the exactness of this (canonical) sequence to the reader.

The upper epicentral series of an arbitrary group G was introduced in [6]. This is a family of characteristic subgroups $1 = Z_0^*(G) \le Z_1^*(G) \le Z_2^*(G) \le \cdots$ with various useful properties such as those listed in the next proposition. Part (i) of the following proposition can be taken as the definition of $Z_c^*(G)$.

Proposition 12 ([6]). Let $c \geq 1$.

- (i) $Z_c^*(G)$ is the smallest normal subgroup of G, contained in $Z_c(G)$, such that the quotient $G/Z_c^*(G)$ is isomorphic to H/Z_cH for some group H.
 - (ii) $Z_{c+1}^*(G)$ contains $Z_c^*(G)$.
- (iii) $Z_c^*(G) = 1$ if and only if there exists an isomorphism $G \cong H/Z_cH$ for some group H.
- (iv) Let N be a normal subgroup of G. Then $N \leq Z_c^*(G)$ if and only if the quotient homomorphism $G \to G/N$ induces an isomorphism $\gamma_{c+1}^*(G) \xrightarrow{\cong} \gamma_{c+1}^*(G/N)$.

Let A be a d-generator abelian group with generators a_1, \dots, a_d . Let A_i denote the cyclic subgroup of A generated by a_i . Let $\mathcal{L}(d)$ denote the set of basic commutators on the d symbols a_i . To each basic commutator $\lambda = [a_{i_1}, \dots, a_{i_k}]$ of weight k we associate the k-fold tensor product of abelian groups $T(\lambda) = A_{i_1} \otimes \cdots \otimes A_{i_k}$.

Thus T is a cyclic group of order equal to the highest common factor of the orders of the A_{i_j} . It is explained in [9] that the invariant $\gamma_{c+1}^*(A)$ is isomorphic to a direct sum of cyclic groups

$$\gamma_{c+1}^*(A) \cong \bigoplus_{\lambda \in \mathcal{L}(d)} T(\lambda)$$
.

The following proposition is an immediate corollary to this isomorphism. An alternative derivation of the proposition can be found in [28].

Proposition 13. Let A be a direct product of cyclic groups

$$A = (C_{n_1})^{d_1} \times (C_{n_2})^{d_2} \times \dots \times (C_{n_k})^{d_k}$$

with each n_i divisible by n_{i+1} . Then

$$\gamma_{c+1}^*(A) \cong (C_{n_1})^{\chi_{c+1}(d_1)} \times \prod_{j=2}^k (C_{n_j})^{\{\chi_{c+1}(d_1+\dots+d_j)-\chi_{c+1}(d_1+\dots+d_{j-1})\}}.$$

Proposition 14 ([9]). Let $G = S_1 \times S_2 \times \cdots \times S_k$ be a direct product of groups whose abelianisations S_i^{ab} have finite, and mutually coprime, orders. Then, for each $c \geq 1$, there is an isomorphism

$$\gamma_{c+1}^*(G) \cong \gamma_{c+1}^*(S_1) \times \cdots \times \gamma_{c+1}^*(S_k)$$
.

Proposition 15. Let N be a nontrivial normal subgroup of a p-group G. Let K denote the kernel of the canonical surjection $\gamma_{c+1}^*(G) \twoheadrightarrow \gamma_{c+1}^*(G/N)$.

- (i) K is nontrivial if and only if there exists some group H for which $H/Z_cH \cong G$.
- (ii) If $p \geq 3$ and $N \subset G^p \cap Z_2G$, or if p = 2 and $N \subset G^{p^2} \cap Z_2G$, then K is contained in the Frattini subgroup of $\gamma_{c+1}^*(G)$.
- (iii) If N is a proper subgroup of a cyclic normal subgroup in G, and if $N \subset Z_2G$, then K is contained in the Frattini subgroup of $\gamma_{c+1}^*(G)$.

Proof. Proposition 12 implies (i).

Proposition 10 implies that K is generated by the image of tensors of the form $(\cdots((n\otimes g_1)\otimes g_2)\otimes\cdots\otimes g_c)$. The hypothesis of (ii) with Lemma 4 implies that the canonical image in $\bigotimes^{c+1}(G,G)$ of each such tensor lies in the subgroup $\bigotimes^{c+1}(G,G)^p$ generated by pth powers of tensors. The hypothesis of (iii) implies that the image lies in the subgroup generated by pth powers of tensors together with tensors of the form $(\cdots((g\otimes g^t)\otimes g_2)\otimes\cdots\otimes g_c)$. In both cases K lies in the Frattini subgroup of the p-group $\gamma^*_{c+1}(G)$.

4. Proof of Theorem A

Let G, S_i, P_i, L be as in the statement of Theorem A. For each prime p_i let $\bigotimes^{c+1}(L, G)_{p_i}$ denote some p_i -Sylow subgroup of $\bigotimes^{c+1}(L, G)$, and set

$$\Lambda_c^i = \log_{p_i} |\gamma_{c+1}^*(S_i^{ab})|,$$

$$\Psi_c^i = \log_{p_i} |\bigotimes^{c+1} ([S_i, S_i], S_i)|,$$

$$\Theta_c^i = \log_{p_i} | \bigotimes^{c+1} (L, G)_{p_i} |.$$

Propositions 10 and 14 imply exact sequences

$$\bigotimes^{c+1}(L,G) \to \gamma_{c+1}^*(G) \to \prod_{i=1}^n \gamma_{c+1}^*(S_i) \to 1,$$

$$\bigotimes^{c+1} ([S_i,S_i],S_i) \to \gamma_{c+1}^*(S_i) \to \gamma_{c+1}^*(S_i^{ab}) \to 1.$$

Hence

$$|\gamma_{c+1}^*(G)| \le \prod_{i=1}^n p_i^{\Lambda_c^i + \Psi_c^i + \Theta_c^i}.$$

To complete the proof we must find appropriate upper bounds $\Lambda_c(S_i^{ab})$, $\Psi_c(S_i)$, $\Theta_c(G, L, P_i)$ for Λ_c^i , Ψ_c^i , Θ_c^i .

Proposition 13 furnishes the appropriate formula for $\Lambda_c(S_i^{ab})$. Proposition 2 provides the appropriate formula for $\Psi_c(S_i)$. Suppose that P_i is a d_i -generator group, that $P_i/(P_i \cap [G,G])$ is a δ_i -generator group, that $(L \cap P_i)/(L \cap \Phi(P_i))$ has order p^{t_i} , that $L \cap P_i$ has order p^{β_i} , and that $[L \cap P_i, P_i]$ has order $p^{\beta_i'}$. Set $M = \mathcal{M}(L,G) = \ker(L \otimes G \twoheadrightarrow L)$ and let M_{p_i} denote the p_i -primary component of M. Since the pair (L,G) is perfect, Proposition 6 implies

$$|\bigotimes^{c+1}(L,G)| \le |\bigotimes^{c}(M,G^{ab})| \times |\bigotimes^{c-1}(M,G^{ab})| \times \cdots$$
$$\times |\bigotimes^{2}(M,G^{ab})| \times |M| \times |L|,$$

and thus

$$\left|\bigotimes^{c+1}(L,G)_{p_i}\right| \leq \left|\bigotimes^{c}(M_{p_i},G^{ab})\right| \times \left|\bigotimes^{c-1}(M_{p_i},G^{ab})\right| \times \cdots \times \left|\bigotimes^{c}(M_{p_i},G^{ab})\right| \times \left|M_{p_i}\right| \times \left|L \cap P_i\right|.$$

Proposition 7(iv) implies that $M_{p_i} \subset \mathcal{M}(L \cap P_i, P_i)$. Since $|L \cap P_i| = p_i^{\beta_i}$, Proposition 8 implies that

$$|\mathcal{M}(L \cap P_i, P_i)| \times |[L \cap P_i, P_i]| \le p_i^{d_i \beta_i - \frac{t_i(t_i+1)}{2}}$$
.

Setting $\omega_i = d_i\beta_i - (1/2)t_i(t_i + 1)$, we have

$$|M_{p_i}| \le |\mathcal{M}(L \cap P_i, P_i)| \le p_i^{\omega_i - \beta_i'}$$

and hence

$$\left|\bigotimes^{c+1}(L,G)_{p_i}\right| \leq p_i^{(\omega_i - \beta_i')\delta_i^c} p_i^{(\omega_i - \beta_i')\delta_i^{(c-1)}} \cdots p_i^{(\omega_i - \beta_i')\delta_i} p_i^{(\omega_i - \beta_i')} p_i^{\beta_i}.$$

This yields the appropriate formula for $\Theta_c(G, L, P_i)$.

5. Proof of Theorem B

Let G, S_i, P_i, L be as in the statement of Theorem B. Let $\overline{\gamma}_{c+1}^*(L, G)_{p_i}$ denote a p_i -Sylow subgroup of the group $\overline{\gamma}_{c+1}^*(L, G)$. The short exact sequence $\overline{\gamma}_{c+1}^*(L, G) \hookrightarrow \gamma_{c+1}^*(G) \to \gamma_{c+1}^*(G/L)$ with Proposition 14 implies

$$\exp(\gamma_{c+1}^*(G)) \le \prod_{i=1}^n \exp(\overline{\gamma}_{c+1}^*(L, G)_{p_i}) \, \exp(\gamma_{c+1}^*(S_i)).$$

We apply Propositions 6 and 10 and the surjection $\bigotimes^{c+1}(L,G) \twoheadrightarrow \overline{\gamma}_{c+1}^*(L,G)$ to obtain

$$\exp(\gamma_{c+1}^*(G)) \le \prod_{i=1}^n \exp((\mathcal{M}(L,G) \otimes G^{ab})_{p_i})^{c-1} \exp((L \otimes G)_{p_i}) \exp(\gamma_{c+1}^*(S_i)).$$

Proposition 7(iv) yields

$$\exp(\gamma_{c+1}^*(G)) \le \prod_{i=1}^n \exp(\mathcal{M}(L \cap P_i, P_i) \otimes G^{ab})^{c-1} \exp((L \otimes G)_{p_i}) \exp(\gamma_{c+1}^*(S_i)).$$

The exact sequence

$$(L \cap P_i) \wedge P_i \rightarrow (L \otimes G)_{p_i} \rightarrow L \cap P_i/[L \cap P_i, P_i] \rightarrow 1$$

is readily derived, and yields

$$\exp(\gamma_{c+1}^*(G)) \le \prod_{i=1}^n \exp(\mathcal{M}(L \cap P_i, P_i) \otimes G^{ab})^{c-1} \exp((L \cap P_i) \wedge P_i)$$
$$\times \exp(\frac{L \cap P_i}{[L \cap P_i, P_i]}) \exp(\gamma_{c+1}^*(S_i)).$$

The bound of Theorem B(i) now follows from Propositions 9 and 11. (We take $N = G = S_i$ in Proposition 11.)

To prove Theorem B(ii) it suffices to note that the condition $[[P^{p^{i-1}}, P], P] \subset P^{p^i}$ is equivalent to saying that the pair $(P^{p^{i-1}}/P^{p^i}, P/P^{p^i})$ has nilpotency class at most 2.

6. Proof of Theorem C

Consider the dihedral group $D_n = \langle a, b \mid a^2 = b^n = (ab) \rangle$ with $n = 2^r m$ where $m \geq 1$ is odd. The smallest term of the lower central series of D_n is $L = \gamma_r(D_n) \cong C_m$. Proposition 7(ii) implies that the relative multiplier $\mathcal{M}(L, G)$ is trivial. Proposition 6 therefore implies an isomorphism $\bigotimes^{c+1}(L, G) \cong L \otimes G$ for all $c \geq 1$. So Proposition 10 yields a commutative diagram

$$\mathcal{M}(L, D_n) = 1 \longrightarrow M^{(c)}(D_n) \xrightarrow{\cong} M^{(c)}(D_{2^r}) \longrightarrow L/\gamma_{c+1}(L, D_n) = 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

in which the rows are exact and the columns are short exact. From this, and the isomorphism $\gamma_{c+1}D_n \cong C_m \times \gamma_{c+1}D_{2^r}$, we derive the isomorphism

$$\gamma_{c+1}^*(D_n) \cong C_m \times \gamma_{c+1}^*(D_{2^r}).$$

A description of $\gamma_{c+1}^*(D_{2r})$ is given in [16]. Alternatively, the description can be re-obtained as follows. The central extensions $C_2 \hookrightarrow D_{2r} \twoheadrightarrow D_{2r-1}$ and repeated applications of Proposition 15(i) imply that $|\gamma_{c+1}^*(D_{2r})| \geq |\gamma_{c+1}^*(C_2 \times C_2)| \times 2^{r-1}$. These central extensions together with repeated applications of Proposition 15(iii) imply that $\gamma_{c+1}^*(D_{2r})$ has the same number of generators as $\gamma_{c+1}^*(C_2 \times C_2)$, namely one generator for each basic commutator on two generators a, b. Theorem B implies that $\exp(\gamma_{c+1}^*(D_{2r})) \leq 2^r$. So, to obtain the isomorphism $\gamma_{c+1}^*(D_{2r}) \cong C_{2r} \oplus (C_2)^{\chi_{c+1}(2)-1}$ it suffices to verify that at least all but one of the generators are of order 2, and that the generators a, b act as stated in the theorem. (Note that the invariant $\gamma_{c+1}^*(G)$ is abelian precisely when $\gamma_{c+1}(G)$ acts trivially on it.) This verification, which we leave to the reader, yields the desired description of $\gamma_{c+1}^*(D_{2r})$ and completes the proof of part (i) of the theorem.

To prove part (ii) we note that the quaternion group Q_n is not of the form H/Z(H) for any group H with centre Z(H) [3]. Proposition 12(ii)(iii) thus implies that the cth term $Z_c^*(Q_n)$ of the upper epicentral series of Q_n contains the centre $Z(Q_n) \cong C_2$. Since $Q_n/Z(Q_n) \cong D_n$, the isomorphism $\gamma_{c+1}^*(Q_n) \cong \gamma_{c+1}^*(D_n)$ follows from Proposition 12(iv).

To prove part (iii) we note that an extraspecial group E(p,k), $k \geq 2$, is not of the form H/Z(H) for any group H with centre Z(H) [3]. Arguing as in the previous paragraph, we see that $\gamma_{c+1}^*(E(p,k)) \cong \gamma_{c+1}^*(E(p,k)/Z(E(p,k))) \cong \gamma_{c+1}^*(C_p \times C_p)$. Proposition 13 completes the proof of part (iii). This argument also holds for $E(p,1)^-$, $p \geq 3$.

To obtain our partial description of $\gamma_{c+1}^*(E(p,1)^+)$, $p \geq 3$, we first remark that $Z_1^*(G)$ is trivial for the group $G = E(p,1)^+$ [3]. Letting Z = Z(G) denote the centre of this group, Proposition 10 and Proposition 1(v) yield an exact sequence $\bigotimes^{c+1}(Z,G) = Z \otimes G^{ab} \otimes \cdots \otimes G^{ab} \to \gamma_{c+1}^*(G) \xrightarrow{\phi} \gamma_{c+1}^*(C_p \times C_p) \to 1$. The group $\bigotimes^{c+1}(Z,G)$ is elementary abelian of rank 2^c , and Proposition 12(iv) implies that ϕ has non-trivial kernel. Theorem B implies that $\exp(\gamma_{c+1}^*(G)) = p$. The commutator subgroup [G,G] = Z acts trivially on $\gamma_{c+1}^*(G)$, and so $\gamma_{c+1}^*(G)$ is abelian. Hence $\gamma_{c+1}^*(G)$ is elementary abelian of rank at most $\chi_{c+1}(2) + 2^c$, and at least $\chi_{c+1}(2) + 1$.

ACKNOWLEDGEMENTS

This research was carried out at the Max Planck Institut für Mathematik, Bonn. I would like to thank the Institute for its very generous hospitality.

References

- Baer, R.: Representations of groups as quotient groups, I, II, and III. Trans. Amer. Math. Soc. 58, 295-419 (1945) MR 7:371h; MR 7:372a; MR 7:372b
- Bacon, M.R. Kappe, L.-C.: The nonabelian tensor square of a 2-generator p-group of class 2. Archiv Math. 61, 508-516 (1993) MR 95h:20041
- [3] Beyl, F.R., Tappe, J.: Group extensions, representations, and the Schur multiplicator. Lecture Notes in Mathematics 958, Springer (1982) MR **84f**:20002
- [4] Brown, R. Johnson, D.L. Robertson, E.F.: Some computations of nonabelian tensor products of groups. J. Algebra 111, 177-202 (1987) MR 88m:20071
- [5] Brown, R. Loday, J.-L.: Van Kampen theorems for diagrams of spaces. Topology 26, 311-335 (1987) MR 88m:55008

- [6] Burns, J., Ellis, G.: On the nilpotent multipliers of a group. Math. Z. 226, 405-428 (1997)MR. 98h:20050
- [7] Burns, J., Ellis, G.: Inequalities for Baer invariants of finite groups. Canad. Math. Bull. 41 385–391 (1998) MR 99i:20028
- [8] Burns, J., Ellis, G., MacHale, D., Ó'Murchú, P., Sheey, R., Wiegold, J.: Lower central series of groups with small upper central factors. Proc. Roy. Irish Acad. Sect. A 97, 113-122 (1997) MR 99g:20061
- [9] Ellis, G.: On groups with a finite nilpotent upper central quotient. Archiv Math. 69, 1-8 (1997) MR 99a:20033
- [10] Ellis, G.: The Schur multiplier of a pair of groups. Appl. Categ. Structures 6, no. 3, 355-371 (1998) MR 99h:20086
- [11] Ellis, G.: A bound for the derived and Frattini subgroups of a prime-power group. Proc. Amer. Math. Soc. 126, No. 9, 2513-2523 (1998) MR 98k:20028
- [12] Ellis, G.: On the computation of certain homotopical functors. LMS J. Comput. Math. 1, 25-41 (1998) MR 99f:55002
- [13] Ellis, G., McDermott, A.: Tensor products of prime-power groups. J. Pure Appl. Algebra 132, no. 2, 119-128 (1998) MR 99g;20049
- [14] Frölich, A.: Baer invariants of algebras. Trans. Amer. Math. Soc. 109, 221-244 (1962)
- [15] Gaschütz, W., Neubüser, J., and Yen, Ti.: Über den Multiplikator von p-Gruppen. Math. Z., 100, 93-96 (1967) MR 36:272
- [16] Gupta, N.D., Moghaddam, M.R.R.: Higher Schur-multiplicators of nilpotent dihedral groups. C.R. Math. Rep. Acad. Sci. Canada, Vol. 14, no. 5, 225-230 (1993) MR 94f:20070
- [17] Green, J.A.: On the number of automorphisms of a finite group. Proc. Royal Soc. A 237, 574-581 (1956) MR 18:464c
- [18] Hall, P.: The Edmonton notes on nilpotent groups. Queen Mary College Mathematics Notes. (1969) MR 44:316
- [19] Jones, M.R.: Multiplicators of p-groups. Math. Z. 127, 165-166 (1972) MR 47:6851
- [20] Jones, M.R.: Some inequalities for the multiplicator of a finite group. Proc. Amer. Math. Soc. 39, 450-456 (1973) MR 47:3524
- [21] Jones, M.R.: Some inequalities for the multiplicator of a finite group II. Proc. Amer. Math. Soc. 45, 167-172 (1974) MR 50:4741
- [22] Loday, J.-L.: Cohomologie et groupes de Steinberg relatifs. J. Algebra 54, 178-202 (1978) MR 80b:18013
- [23] Lubotzky, A., Mann, A.: Powerful p-groups I. Finite groups. J. Algebra 105, no. 2, 484-505 (1987) MR 88f:20045
- [24] Lue, A.-S.T.: The Ganea map for nilpotent groups. J. London Math. Soc. 14, 309-312 (1976) MR 55:3110
- [25] MacDonald, J.L.: Group derived functors. J. Algebra 10, 448-477 (1968) MR 40:205
- [26] MacHale, D, Ó'Murchú, P.: Commutator subgroups of groups with small central factor groups. Proc. Roy. Irish Acad. Sect. A 93, no. 1, 123-129 (1993) MR 95b:20058
- [27] Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. New York (1976) MR 54:10423
- [28] Mashayekhy, B., Moghaddam, M.R.R.: Higher Schur-multiplicator of a finite abelian group. Algebra Colloquim 4:3, 317-322 (1997) MR 2000a:20079
- [29] Wiegold, J.: Multiplicators and groups with finite central factor groups. Math. Z. 89, 345-347 (1965) MR 31:3510
- [30] Wiegold, J.: Commutator subgroups of finite p-groups. J. Australian Math. Soc., 10, 480-484 (1969) MR 41:3606

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, GOTTFRIED-CLAREN-STRASSE 26, BONN, GERMANY Current address: Department of Mathematics, National University of Ireland, Galway, Ireland E-mail address: graham.ellis@nuigalway.ie